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1. Introduction

The AdS/CFT correspondence states that Type IIB string theory on AdS5 ×X5 is equiv-

alent (dual) to a certain superconformal quiver gauge theory. Here X5 denotes a five

dimensional Sasaki-Einstein1 manifold [2 – 8]. This setup can be constructed by probing a

Y6 Calabi-Yau threefold with D3-branes. The gauge theory emerges on the worldvolume

of the branes and its structure reflects the properties of the singular threefold. Y6 is the

cone over X5 and its metric is related to that on X5 by:

ds2
Y6

= dr2 + r2ds2
X5

(1.1)

The richest structure that is still tractable using the available techniques can be obtained

if we restrict the Calabi-Yau manifold to be toric. The other four dimensions are flat,

1A 5d manifold is Sasaki-Einstein iff its metric cone is Ricci-flat and Kähler , i. e. a Calabi-Yau threefold.
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these dimensions are filled by the D3-branes. If we set the coordinates of the branes

so that they lie at the tip of the cone, then we obtain the supersymmetric theory on

their 3+1 dimensional worldvolume. Its IR limit is then the field theory dual to the AdS

background above. The Calabi-Yau condition preserves one quarter of the supercharges,

the branes further break half of them, so finally we obtain N = 1 supersymmetry in the

four dimensional worldvolume. The near horizon limit of this configuration is AdS5 × X5.

The matter content of the quiver gauge theory is neatly summarized in the quiver

graph [9] which also generalizes Dynkin diagrams. Each node in the quiver diagram may

carry an index, Ni, for the i-th node. and denotes U(Ni) gauge group, the edges (arrows)

label the chiral bifundamental fields (see e. g. figure 3). These fields transform in the

fundamental representation of U(Ni) and in the anti-fundamental of U(Nj) where i and

j represent the nodes in the quiver that are the start and endpoints of the corresponding

arrow.

The AdS/CFT correspondence is still a conjecture, although it has been justified by

many checks. The comparison of the two dual theories has been hindered by technical

difficulties some of which arise when one is trying to determine the superpotential for

the quiver gauge theory which, besides the quiver, one also has to specify for an N = 1

supersymmetric theory.

The Forward Algorithm,Feng:2000mi, Feng:2001xr starts with the quiver theory and

computes the toric data for the singularity. The information contained in the D– and F-

terms can be encoded in a matrix (Qt) whose cokernel gives the vectors of the toric data

(see [12, 13] for toric geometry). The CY condition (c1(Y6) = 0) implies that these vectors

are coplanar, so with an appropriate SL(3, Z) transformation a convex integer polygon in

two dimensions can be obtained. We will refer to this polygon as the toric diagram of the

singularity [14 – 16].

The brane tiling and the periodic quiver were first introduced in [1]. That paper gives

a simple algorithm for computing the toric diagram with multiplicities of the gauged linear

sigma model fields using the characteristic polynomial of the Kasteleyn matrix in the dimer

model (see also [17 – 19]). A logical flowchart between the various concepts is presented in

figure 1).

In this paper we are going to deal with the following question: How does one construct

the dual quiver gauge theory for an arbitrary toric singularity? We will answer this question

by describing the Fast Inverse Algorithm (the red arrow in figure 1) which constructs the

brane tiling from an arbitrary toric diagram. The brane tiling contains all the information

of the quiver gauge theory in the way described above, so we obtain a method for computing

the conformal field theory which is AdS/CFT dual to the given toric singularity.

A universal method is partial resolution [20, 21, 10]. The Calabi-Yau threefold can be

embedded into C
3/(Zn×Zm) where n and m are the smallest integers such that the orbifold

toric diagram contains the toric diagram of the Calabi-Yau manifold of interest. The dual

quiver gauge theory is well-known for abelian orbifolds and we can obtain the subsector

corresponding to the threefold by performing partial resolutions. The resulting theory is

non-unique but flow to the same universality class in the infrared, this phenomenon is

called toric duality [10] which we will investigate in section 6.
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Toric diagram

Algorithm
Fast Inverse

Figure 1: The logical flowchart.

Another approach utilizes exceptional collections of coherent sheafs over divisors which

give the quiver gauge theory data [22]. A general algorithm for the computation of tree-level

superpotentials was recently introduced in [23, 24] in the context of derived categories [25].

In the present paper we describe a simple algorithm that computes the quiver and the

superpotential from the toric diagram. The next section is devoted to the study of the

recently discovered brane tilings that will provide us with a very useful tool in constructing

the quiver gauge theories.

2. Brane tilings and quivers

2.1 The basics

In this section we give a short introduction to the recently discovered brane tilings [1].

The brane tiling is a configuration of intersecting NS5 and D5-branes in Type IIB string

theory that generalize the brane box [26] and the brane diamond [27] configurations. This

brane configuration has an effective 3+1 dimensional gauge theory on its worldvolume

which due to the orientation of the branes has 4 supercharges. This translates to N = 1

supersymmetry in four dimensions.

In the brane tiling, there are two types of branes, NS5-brane and D5-branes. The

NS5-brane spans the 0123 directions and wraps a holomorphic curve in 4567 where the 46

directions are compact. The D5-branes span the 012346 directions and stretch in between

the holes in the network that the NS5-brane forms as it wraps the holomorphic curve.

These D5 branes are bounded by the NS5-branes in the 46 directions, leading to a 3+1

dimensional theory in their worldvolume at low energies. Four supercharges survive the

configuration, leading to N = 1 supersymmetry in four dimensions. This setup is twice

T-dual along the 4 and 6 directions to D3-branes probing arbitrary toric singularities.

The NS5-brane is mapped to the singularity and the D5-branes become probe D3-branes.

This point was demonstrated for the case of brane boxes in [28] and for the case of brane

diamonds in [27]. Furthermore for brane intervals of the type introduced in [29] T-duality

– 3 –
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needs to be done once to get to a configuration of D3 branes probing a singular CY manifold

and the relation between the two constructions is studied in [30] where the dualities act

on the compact 46 directions. As we will soon show, the brane tiling graph encodes the

quiver and the superpotential information, therefore fully specifies the 4D N = 1 theory.

The relevant physics is visualized by drawing the brane tiling in the 46 plane. The

intersection of the holomorphic curve in 4567 with this plane is the brane tiling graph. This

tiling is doubly periodic since the 46 directions are taken to be compact. The orientation

of the NS5-brane together with the holomorphicity of the curve it wraps implies that the

graph in the 46 directions is bipartite.2 This bipartite property is identified with the

orientation of fundamental strings along an intersection point of NS5-branes. Figure 4

shows an example of this property. The green arrows indicate orientations of fundamental

strings stretching between two neighboring D5 branes and around a white node these are

oriented in a clockwise fashion. On the other hand, around a black node the strings are

oriented in a counterclockwise fashion. The bipartite property implies that each face in

the brane tiling has an even number of edges and that it has equal number of incoming

and outgoing arrows. This implies anomaly cancellation in the quiver gauge theory which

ensures that this gauge theory is well-defined. Another useful concept which follows from

the brane tiling is its dual graph which is termed the periodic quiver. The periodic quiver

is a special type of quiver, with two periodic directions in which nodes and arrows are

identified across two directions. Figure 2 shows an example of a periodic quiver for the

well known case of C
3/Z3 (otherwise known as the complex cone over dP0). Nodes carry 3

different labels and nodes with the same label as well as arrows between them are identified.

Brane tiling Periodic quiver Gauge theory

faces nodes U(N) gauge groups

edges edges bifundamental fields

nodes plaquettes superpotential terms

Given a brane tiling, it is straightforward to derive the associated quiver gauge theory.

The tiling encodes both the quiver diagram and the superpotential, which can be con-

structed in the following way. The dual graph to the tiling is the periodic quiver (see e. g.

figure 2). The periodic quiver can be seen as the usual quiver graph drawn on the surface

of a 2-torus. The plaquettes of the periodic quiver are the terms in the superpotential.

These plaquettes correspond to black and white nodes in the brane tiling. The color of the

node in the tiling tells us the sign, the valence of the node is equal to the order of the term.

Thus, we conclude that each bifundamental field appears exactly twice in the superpoten-

tial, once with a plus and once with a minus sign. We see that the tiling provides us with

a simple geometrical unification of quiver and superpotential data.

As an example, figure 3 shows the brane tiling and the quiver for dP0. We see that

the brane tiling contains three faces, these correspond to the three gauge groupes (nodes)

in the quiver. The nine edges in the tiling are the bifundamental fields. The six nodes of

2A graph is bipartite when its nodes can be colored in white and black, such that edges only connect

black nodes to white nodes and vice versa. This implies that each face has even number of edges.
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Figure 2: The dP0 periodic quiver. The nodes denote U(N) gauge groups, the directed edges

between them are bifundamental fields. The plaquettes of the quiver graph are terms in the super-

potential. This example has three gauge groups, they are labelled by numbers. If we identify the

nodes with the same numbers (i. e. we “compactify” the periodic quiver), then we arrive at the

usual quiver diagram.

1

23

2

2 2

2

3

1

1

3

3

1

3

1

3

3

Figure 3: dP0 brane tiling & quiver. The unit cell of the lattice is shown in red. The theory

has three gauge groups (faces in the tiling) and six cubic terms in the superpotential (valence three

nodes of the tiling).

the tiling immediately give the following superpotential:

W = X
(1)
12 X

(2)
23 X

(3)
31 + X

(2)
12 X

(3)
23 X

(1)
31 + X

(3)
12 X

(1)
23 X

(2)
31

−X
(3)
12 X

(2)
23 X

(1)
31 − X

(2)
12 X

(1)
23 X

(3)
31 − X

(1)
12 X

(3)
23 X

(2)
31 (2.1)

Here X
(k)
ij denotes the bifundamentals going from gauge group i to j, and k is just labelling

the different fields.

Another example is the conifold (see figure 4). The tiling contains two faces which

correspond to the two gauge groups.

From the tiling we can read off the two quadratic terms in the superpotential:

W = X
(1)
12 X

(1)
21 X

(2)
12 X

(2)
21 − X

(1)
12 X

(2)
21 X

(2)
12 X

(1)
21 (2.2)

In general, the number of gauge groups in the quiver, or equivalently, the number of

faces in the brane tiling is equal to twice the area of the toric diagram [31]. The area of an
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Figure 4: Brane tiling & quiver for the conifold. The green arrows indicate the directions of the

bifundamental arrows in the quiver

arbitrary integer polygon can be calculated by means of Pick’s theorem [32]:

2 · Area = 2I + E − 2, (2.3)

where I is the number of internal points in the toric diagram , and E denotes the number

of external points (points on the edges) in the toric diagram.

Using this formula we can relate the area of the toric diagram to the number of gauge

groups in the quiver gauge theory. The number of 0-cycles, 2-cycles and 4-cycles in the

non-compact CY manifold are given by 1, I + E − 3 and I respectively. Using the relation

that the number of gauge groups is equal to the sum of these three numbers we arrive at

the relation that the number of gauge groups is twice the area.

For a complete introduction to brane tilings and to the Fast Forward Algorithm and

for more examples the reader should refer to [1, 17].

2.2 Superconformal fixed point and R-charges

In the last section we reviewed the construction of brane tiling. In this section we are

going to find a new connection between R-charges of fundamental fields and some basic

properties of the tiling configuration.

The quiver gauge theories described by the brane tilings are expected to flow at low

energies to a superconformal fixed point. The global symmetry group of the theory contains

the U(1) R-symmetry. The Sasaki-Einstein manifolds have a canonical Killing vector field

called the Reeb vector. This is dual to the R-symmetry of the quiver gauge theory.

It has been shown in [33] that the superconformal R-charges can be determined by a-

maximization: the R-symmetry is the U(1) symmetry, which maximizes the combination of

’t Hooft anomalies a(R) ≡ (9TrR3 − 3TrR)/32. The maximal value of a is then suggested

to be the central charge of the superconformal theory (for details see [34, 35]).

The R-charges are related by the AdS/CFT correspondence to volumes of supersym-

metric submanifolds in the dual Sasaki-Einstein manifold. Recently, it has been shown [15]

that these volumes can be extracted from the toric data of the Calabi-Yau singularity

without knowing the metric explicitly. The R-charges can be obtained by minimizing a

– 6 –
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function Z that depends only on the toric data of the singularity and the trial Reeb vector.

This method is called the geometric dual to a-maximization.

Let us assign an R-charge to each bifundamental field in the brane tiling. At the IR

superconformal fixed point, each term in the superpotential satisfies
∑

i∈edges around node

Ri = 2 for each node (2.4)

where the sum is over all edges surrounding a given node. The (numerator of the) NSVZ

beta function for each gauge coupling vanishes, which leads to the following equation:
∑

i∈edges around face

(1 − Ri) = 2 for each face (2.5)

where the sum is over all edges surrounding a given face. These constraints will get a nice

geometric interpretation in section 3.

Let F denote the number of faces, E the number of edges and V the number of vertices

in the brane tiling. By summing equation (2.4) over the nodes, we get 2
∑

edges Ri = 2V .

Using this and summing equation (2.5) over all the faces in the tiling we arrive at the Euler

formula for a torus:

F − E + V = 0 (2.6)

This is a non-trivial statement about the quiver theory which was first observed in [36] and

derived in [1].

In our case the linear ’t Hooft anomaly vanishes [37]: TrR =
∑

beta functions = 0, so

we have to maximize the following function:

a(Ri) =
9

32

∑

i

(Ri − 1)3 (2.7)

The computation of a-maximization for a given quiver gauge theory has by now turned

into a standard procedure for solving for supersymmetric gauge theories. Furthermore, it

serves as good probe for consistency checks on quiver theories. Indeed, while there are

many theories for which this procedure leads to nice and impressive results, it turns out

that there is a large class of quiver gauge theories for which a straightforward application of

a-maximization gives rise to negative or zero R-charges. This obviously indicates some sign

of inconsistency. Such theories were termed in [38] as having tachyons, in [39] as fractional

Seiberg duals and in [40] as mutations. All these examples share the same property of

having negative R-charges.

3. Isoradial embeddings and R-charges

Let us consider again the constraints for the R-charges (section 2.2):
∑

i∈edges around node

Ri = 2 for each node (3.1)

2 +
∑

i∈edges around face

(Ri − 1) = 0 for each face (3.2)

– 7 –
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Figure 5: Isoradially embedded part of an arbitrary brane tiling (in green).

After multiplying both equations by π and rearranging the second one, we arrive at

∑

i∈edges around node

(πRi) = 2π for each node (3.3)

∑

i∈edges around face

(πRi) = (#edges − 2)π for each face (3.4)

Now, if we think of πRi as an angle, then we see that the first equation is just the statement

that the angles around a node sum up to 2π, whereas the second equation tells us that the

sum of the internal angles in a polygon is (#edges − 2)π.

Where are these angles in the brane tiling? To show this, we need the notion of

isoradial embedding [41, 42, 19]. So far the brane tiling was only a graph for us, we could

freely move around its nodes without causing self-intersection. The isoradial embedding

is an embedding of the tiling graph into the plane, where the nodes of each face are on

a circle of unit radius. (The edges of the tiling are straight lines). The square lattice for

the conifold provides a trivial example (figure 4 (i)), where the unit circles are just the

circumcircles of the squares in the tiling. The squares are of same size so the circumcircles

will have the same radius which can be chosen to be one.

To demonstrate a non-trivial example, figure 5 shows a small part of a brane tiling.3

This tiling graph is isoradially embedded into the plane. This can be seen in figure 6 (i),

where the black circles are the circumcircles of unit radius of the faces in the tiling. The

nodes of the brane tiling are sitting at the intersection points of the circles.

Once we have the tiling isoradially embedded, we can immediately draw the corre-

sponding rhombus lattice4 (figure 6 (ii) shows the rhombus lattice in red), which can be

obtained by simply connecting the center of the circles with the nodes of the face in the

brane tiling. The rhombi (a.k.a. “diamonds” in [43]) in this lattice have edges of unit

length. This is guaranteed by the equality of the radii of the circles. We see that by isora-

dially embedding our original tiling we gain a lattice of rhombi. The bifundamental fields

3From now on, green lines will always denote edges in the brane tilings, red lines are edges of the rhombus

lattice and (directed) blue lines denote the rhombus loops.
4Also known as quad-graph or diamond lattice.
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Figure 6: (i) Circumcircles around the faces (in black), (ii) and the corresponding rhombus lattice

(in red).

α i

θi

A

BD

C

Figure 7: A rhombus in the lattice. The green line is an edge in the brane tiling, the magenta line

is the corresponding bifundamental field in the periodic quiver.

of the quiver theory (i. e. edges in the brane tiling) are in one-to-one correspondence with

the rhombi of this rhombus lattice.

Let us study now a single rhombus that is shown in figure 7. The green bifundamental

edge (AC in figure 7) is just one of the diagonals of the rhombus. If instead of the green

lines we draw the flipped magenta ones (BD in figure 7) into the rhombus lattice, then we

obtain the dual graph to the tiling, the periodic quiver (which is also isoradially embedded).

We immediately see that on the level of the rhombus lattice, the quiver and the brane tiling

are on the same footing.

In the figure, θi denotes the DCB and BAD angles in the rhombus. The shape of the

rhombus is characterized by this single angle. We are now in the position to visualize the

R-charges if we set

θi ≡ πRi (3.5)

We see that the condition for vanishing beta function to superpotential terms, equa-

– 9 –
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tion (3.3) says that the angles around a node in the brane tiling sum up to 2π, whereas the

condition for vanishing beta function to gauge groups, equation (3.4) is equivalent to the

statement that the sum of the internal angles of each face in the tiling is (#edges − 2)π.

This is certainly true for a flat torus.

It is not a priori clear that an arbitrary brane tiling graph can be isoradially embedded

into the plane. If the exact R-charges are strictly greater than zero and less than one, then

they provide a good embedding of the rhombus lattice, hence an isoradial tiling. If some

Ri = 0 (or 1), then θi = 0 (or π), that is the corresponding rhombus becomes degenerate.

The results of this section is that we identified the R-charges of the bifundamental

fields with certain angles in the brane tiling. For any periodic embedding of the rhombus

lattice of the brane tiling into the plane the trial R-charges (defined by the θi angles in

the rhombi) automatically satisfy the equations (3.3) and (3.4), and vice versa, the set of

exact R-charges of the quiver gauge theory gives a good rhombus lattice and thereby an

isoradial embedding of the brane tiling.

Finally, let us transform equation (2.7) into the following form using the angles in

figure 7:

a = −
9

32π3

∑

i

α3
i (3.6)

Here we used the fact that αi = π − θi = π(1 − Ri). The parameter space of the different

possible embeddings of the rhombus lattice is nothing, but the manifold over which one

has to do a-maximization. This space will be investigated in the next section.

4. Rhombus loops and zig-zag paths

In the last section we introduced a very special type of embedding of the tiling, the so-called

isoradial embedding. This has been used to visualize the R-charges of the bifundamental

fields. In this section we go further and develop new mathematical concepts that will

allow us to study the moduli space of isoradial embeddings that is the parameter space of

a-maximization.

The most important new concept that we will continuously use in the present paper

is the notion of the rhombus path (a.k.a. “train track” [43]). A rhombus path is defined

in the rhombus lattice as a path on rhombi which “does not turn”, i. e. after entering to

a rhombus on one edge, we are exiting on the opposite side (see figure 8). We can assume

that the rhombus path is extended to its maximal size, which means that in a rhombus

lattice on the surface of T
2 (or, equivalently, in the periodic rhombus lattice) it is a closed

loop, the rhombus loop. The rhombus loops will be of great importance in the Fast Inverse

Algorithm in section 5.

The rhombus edges we are crossing while going along the rhombus loop are all parallel.

Their direction, which can be parametrized by a characteristic angle, the rhombus loop

angle (α and β in figure 21). This angle can be changed by tilting the rhombus loop as in

figure 9.

In [43] it was shown that: (i) No rhombus path crosses itself (or it is periodic), and

(ii) two distinct rhombus paths cross each other at most once. These conditions are not

– 10 –
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Figure 8: (i) Rhombus path in the rhombus lattice. (ii) Equivalent zig-zag path in the brane

tiling. We will use blue lines to depict rhombus loops schematically. The edges which are crossed

by the blue line in (i) are all parallel. Their orientation can be described by an angle, the so-called

rhombus loop angle.

α=π/4α=0

RR

Figure 9: Tilting along the horizontal R rhombus loop. The rhombus loop angle α changes

during the Dehn-twist. Here we have chosen α = 0 to be the vertical direction (|), hence α = π/4

corresponds to the skew edges (/).

always true in our case, because we allow the existence of degenerate rhombi. Two-valence

nodes also result in collapsing rhombi, they have to be integrated out before drawing the

rhombus lattice.

If the R-charge of a bifundamental field is one, the corresponding rhombus collapses

(θi = π). This happens for example in the square-octagon phase of the zeroth Hirzebruch

surface. We can also squash the rhombus in the perpendicular direction, if we set the

R-charge equal to zero. As opposed to the Ri = 1 situation, this case is not allowed, it

leads to the so-called tachyonic quivers.

If we color the edges in the brane tiling corresponding to the rhombus loop (the blue

lines in figure 8), we get the so-called zig-zag path [19]. This is a path in the tiling which

turns maximally left at a node, then maximally right at the next node, then again left, and

so on. An example is presented in figure 8. The first picture shows the rhombus path, the

second one is the corresponding zig-zag path in the brane tiling. See figure 19 for another

example in SPP. Here the blue zig-zag path is periodic.

The zig-zag paths and the rhombus loops are equivalent, the only difference is that they

refer to the same path in different lattices. Henceforth we will use both terms depending

on the context. At first, it might be non-trivial to understand why there are exactly two

zig-zag paths going through each tiling edge. This is best seen in the rhombus lattice

where these two paths are the two “perpendicular” rhombus loops that are crossing the

– 11 –
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Figure 10: Hirzebruch zero brane tiling.

corresponding rhombus.

The zig-zag paths in the tiling are in one-to-one correspondence with zig-zag paths in

the periodic quiver. These paths in the quiver are oriented loops hence there are gauge-

invariant trace operators that can be constructed by multiplying the bifundamentals one

after the other along the path. Such an operator is called the zig-zag operator.

4.1 Inconsistent theories

In the previous sections we reviewed the construction of brane tilings, visualized R-charges

as certain angles in the tiling and introduced the new concept of zig-zag paths. One may

now imagine that for any arbitrary bipartite tiling there exists a corresponding quiver

theory. Unfortunately, this is not the case and there exist some bipartite graphs which do

not give meaningful quiver theories. So far in the literature there was no other restriction on

consistent tilings, than bipartiteness. In this paper we are going to give a simple constraint

that has to be satisfied by every consistent brane tiling.

One can construct the Y6 Calabi-Yau manifold as a Kähler quotient [44] that is as the

(classical) vacuum moduli space of a gauged linear sigma model (GLSM) [45, 20]. The “Fast

Forward Algorithm” ([1], see also [17]) computes the toric diagram of the singular Calabi-

Yau from the brane tiling. The algorithm also gives the multiplicities of the GLSM fields,

these appear in the toric diagram. It is possible that from a given tiling the Fast Forward

Algorithm produces a toric diagram, whose area is smaller than what we expect from

the number of the corresponding gauge theory. This is a good sign of inconsistency of the

theory. Then, typically, a-maximization gives zero R-charges for some of the bifundamental

fields.5 For such theories, we also get GLSM field multiplicities in the corners of the toric

diagram (see figure 11). These external multiplicities should be further investigated.

Partial resolutions of the singularity correspond to turning on Fayet-Iliopoulos terms

in the supersymmetric gauge theory side and leads to Higgsing in the quiver gauge theory.

The FI terms govern the size of the blow-ups. The effective theory at scales smaller than

the expectation value of the Higgsed field can be described by the Higgsed quiver and

5In [46] such tachyonic quivers were investigated in the context of (p, q)-webs.
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3

Figure 11: (i) Hirzebruch zero toric diagram (ii) un-Higgsed Hirzebruch. The area remains the

same, external multiplicities appear.

6

un−Higgsing

CONSISTENT
5

Figure 12: (i) Hirzebruch zero toric diagram (ii) un-Higgsed Hirzebruch. The area increases by

1/2 corresponding to the new face in the brane tiling.

superpotential [10, 47]. Here we consider the inverse of this process, the so-called un-

Higgsing. In the level of brane tiling this can be implemented by adding a new edge to

the graph. This edge divides a face into two faces, therefore the number of gauge groups

increases by one, the number of bi-fundamental fields increases by one while the number

of terms in the superpotential remain the same. Alas, not all possible un-Higgsings of

the theory are consistent, in fact, it is a non-trivial problem to determine the allowed

un-Higgsings for a given brane tiling.

To demonstrate consistent and inconsistent un-Higgsing, we consider the Hirzebruch

zero (F0) surface. F0 has two toric phases that are connected by Seiberg duality. The

brane tiling for one of the phases is the square lattice. We will study the other phase that

is the square-octagon lattice which is depicted in figure 10. We consider two possible un-

Higgsings of the theory that are shown in figure 13. The new edge (dashed line) is dividing

the original face 4 into two faces 4 & 5. The first un-Higgsing (i) leads to an inconsistent

theory. By means of the Fast Forward Algorithm we can compute its toric diagram with

the multiplicities of the GLSM fields. The results are shown in figure 11. We see that

during the un-Higgsing the area of the diagram remained the same, meanwhile an external

multiplicity (the 3 in the corner) appeared.

We now consider another un-Higgsing that adds the line with a different orientation

(see figure 13 (ii)). This theory is consistent. The corresponding toric diagram is shown in

figure 12.

In the Fast Forward Algorithm it is a priori unclear why these small changes in the

tiling lead at one time to a consistent and at another time to an inconsistent theory.

Having discussed the main mathematical concepts that we need, we can now understand

what causes the inconsistency.
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Figure 13: (i) Hirzebruch zero inconsistently un-Higgsed. (ii) Consistent un-Higgsing.
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Figure 14: (i) Inconsistently un-Higgsed Hirzebruch. The rhombus loops are indicated with the

blue lines. The zig-zag paths contain the edges that are crossed by the blue paths. The following

rhombus loops are obtained: A : (0,−1) B : (−2, 2) C : (2,−1). Here (a, b) denotes the homology

class of the path.

(ii) Consistently un-Higgsed F0. The rhombus loops reproduce the (p, q)-legs of the toric diagram

(figures 6, 7): A : (0,−1) B : (0, 1) C : (−2, 1) D : (1,−1) E : (1, 0).

figure 14 shows the rhombus loops6 for the two different un-Higgsing of F0. The

blue lines are crossing edges which are the edges of the corresponding zig-zag paths. The

pictures show the rhombus loops only inside the fundamental cell. For the inconsistent

tiling (i) we obtain only three rhombus loops, it does not reproduce the (p, q)-legs of the

toric diagram which we obtained by the Fast Forward Algorithm (figure 11). On the other

6We can choose the direction of the rhombus loops so that they pass the black nodes on the left-hand

side.
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Figure 15: The subgraph connects to the rest of the tiling through its four nodes in the corner.

No consistent brane tiling can contain this subgraph, because it results in collapsing rhombi and

vanishing R-charges.

hand, the zig-zag paths of the consistent tiling (ii) give the legs properly (figure 12).

In the first tiling the edge between face 4 and 5 is at the intersection point of the B

loop with itself. The corresponding rhombus in such cases is always degenerate, because all

the four edges of the rhombus must be parallel, therefore the first tiling is inconsistent. We

can state this in general: Self-intersecting zig-zag paths lead to inconsistent brane tilings.

This example demonstrated how zig-zag paths can be used to determine whether the

tiling is consistent or not. Besides these computations, the rhombus loop technique enables

us to generate simple rules that must be satisfied by any consistent tiling. This might help

in the construction of such tilings. An example is presented in figure 15. This subtiling

cannot be part of any consistent tiling. It is clear from the corresponding (degenerate)

rhombus lattice that there are zero R-charges as the reader may check. The inconsistency

can be also seen by performing Seiberg duality on face 1 that creates a face with only two

edges.

4.2 Conjecture of (p, q)-legs and rhombus loops

In the previous section we investigated rhombus loops in the rhombus lattice and equivalent

zig-zag paths in the brane tiling. We have seen that one can use these paths to decide

whether the tiling is a priori consistent or not (i. e. before doing a-maximization). In

the followings we make an observation which will enable us to develop the Fast Inverse

Algorithm in section 5.

To state the conjecture we introduce the notion of (p, q)-webs. (p, q)-webs were intro-

duced in [48] to study five dimensional gauge theories with 8 supercharges (i. e. N = 1).

The (p, q)-web describes a configuration of 5-branes in Type IIB string theory. These webs

might be interpreted as “dual graphs” to toric diagrams as it was noticed in [49]. This

observation has been proven in [12]. An example is shown in figure 16. The geometry

can be described by a T
2 fibration over the web. A circle in the fibre degenerates at each

line of the diagram and at the nodes the whole fibre collapses. The lines of the web have

rational slopes denoted by two integers: (pi, qi). These are the (p, q) charges of the branes.

A D5-brane is assigned a (1, 0) charge whereas the NS5-brane carries (0, 1) charge. These

two type of branes correspond to horizontal and vertical lines in the web. At each node we
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(1,−1)(−1,−1)

Figure 16: Toric diagram (i) and (p, q)-web (ii) for del Pezzo 2. The charges of the external branes

are shown. According to the conjecture, these correspond to the homology classes of the rhombus

loops in the brane tiling.

have three branes intersecting each other and their charges must sum up to zero:
∑

i

pi = 0
∑

i

qi = 0 (4.1)

In the followings we will use (p, q)-legs. These are the external lines in the (p, q)-web

and they extend to infinity. Their direction is perpendicular to the corresponding edge of

the (dual) toric diagram.

An important observation is that for each rhombus loop of homology class (p, q) there

is a corresponding (p, q)-leg in the toric diagram. We will heavily use this in section 5.

The conjecture has been checked for many consistent brane tilings. Inconsistent tilings

tipically do not satisfy this criterion. By reading off the zig-zag paths from the tiling we

might arrive at the toric data faster than by the usual Kasteleyn matrix process [1, 17].

We simply need to draw all the zig-zag paths (each edge has two of them) and from their

homology classes the (p, q)-legs are obtained. These legs uniquely determine the toric

diagram of the Calabi-Yau cone.

Another observation7 is that we can generate zig-zag paths by means of perfect match-

ings. A perfect matching is a subgraph of the tiling which contains all the nodes and each

node has valence one [18, 19]. This means that a perfect matching is a set of dimers (edges

in the brane tiling) that are separated, i. e. they don’t touch each other, furthermore they

cover all the nodes. Therefore, we have altogether V/2 dimers in each perfect matching,

where V denotes the number of nodes in the tiling. To demonstrate this, we have drawn the

periodic perfect matchings for the Suspended Pinch Point (figure 18) whose toric diagram

is shown in figure 17.

It can be easily checked by the reader that if we put two perfect matchings A and B

on top of each other (this is denoted by A + B), then we obtain loops and separate edges

which we neglect. Let us fix a reference perfect matching R. Now for each matching Ai

we can define an integer height function. The loops of R + Ai denote the change in the

height as in an ordinary map. The height function is a well-defined function on the infinite

periodic tiling, but on the 2-torus it has monodromy that is described by two integers:

7The results of the rest of the paper will not depend on this observation.
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(0,0) (2,0)

Figure 17: Toric diagram for the SPP. We have drawn the blue (p, q)-leg between the nodes (1, 1)

and (2, 0). The zig-zag path corresponding to the leg is shown in figure 19.
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Figure 18: The six periodic perfect matchings of SPP [1]. The green edges are contained in the

matching, the dashed lines are the other edges of the tiling. The (s, t) numbers are the corresponding

points in the toric diagram (figure 17).

(s, t). These numbers are the change in the height as we go along the two non-trivial cycles

of the torus of the brane tiling. Such pairs are assigned to every perfect matching. For

SPP these vectors are shown in figure 18. (Here we used the first perfect matching as a

reference matching.) These pairs are coordinates of points in the toric diagram, in fact, the

toric diagram is the (convex) set of all such points. The change in the reference matching

merely translates the toric diagram.

Now if we choose two adjacent points in the toric diagram then there are perfect

matchings corresponding to them whose superposition is (experimentally) a zig-zag path.

We demonstrate an example for SPP. The two neighboring matchings have (1, 1) and (2, 0)

coordinates in the toric diagram. Their superposition is shown in figure 19. The emerging

non-trivial blue cycle (zig-zag path) has homology (1, 1) which precisely corresponds to the
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Figure 19: The (1, 1) and (2, 0) perfect matchings on top of each other. We see the emerging (1, 1)

homology zig-zag loop which corresponds to the blue (p, q)-leg in figure 17.
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Figure 20: PdP4 model I brane tiling with a (1,0,1,0,1,0,0) N = 2 fractional brane [50]. The

bounding rhombus loops (A and B zig-zag paths) are shown in blue.

blue (1, 1) leg in figure 17 which is sitting between the two adjacent points.

For further informations on perfect matchings and the dimer model the reader should

refer to [1, 17 – 19].

In a recent paper [50], fractional branes were studied in the context of brane tilings.

The fractional brane is a D5-brane wrapped on a 2-cycle that vanishes at the tip of the

cone. Adding M fractional branes changes the rank of the SU(N) gauge groups of the

quiver. For deformation branes some of the ranks increase by M . One can shade these

tiles as shown in figure 20. Zig-zag paths naturally show up as boundaries of these shaded

areas.
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α βθ=     −
θ

α:

β:

Figure 21: Assigning angles (θ) to the rhombus loops. The figure shows two intersecting blue

rhombus paths. There is a single rhombus and a green bifundamental edge at the intersection of

these paths. This bifundamental has an R-charge that is proportional to the angle θ of the rhombus.

This angle is just the difference of the rhombus loop angles α and β assigned to the two rhombus

paths: Rπ = θ = |α − β| (or π − |α − β| depending on the orientation).

4.3 Parameter space of a-maximization

We have defined the rhombus loop angle that is assigned to a rhombus path. This angle

gives the relative orientation of the parallel edges in the path. We have seen that we can

tilt the rhombi in a rhombus path by changing its rhombus loop angle (figure 9). In fact,

we can parametrize the entire space of different embeddings of the rhombus lattice (i. e.

the isoradial embeddings of the brane tiling) by these rhombus loop angles [43]. At the

intersection point of two rhombus paths, we find a single rhombus, whose angles (θ and

π−θ) are determined by the difference of the rhombus loop angles of the paths (figure 21),

because they fix the orientation of the edges of the rhombus. This angle θ is proportional

to the R-charge of the field sitting in the rhombus as we have seen in section 3.

This means that we can parametrize the convex polyhedron space [43] of trial R-charges

by the set of rhombus loop angles. The number of such loops is d, which is equal to the

number of the edges of the toric diagram according to our conjecture in section 4.2. One

of the rhombus loop angles can be set to zero by a global rotation of the rhombus lattice.

This reduces the dimension of the parameter space to d − 1. In figure 21 this has already

been done, because the α angle is zero (the parallel edges in the corresponding rhombus

path are horizontal).

Let us see how can we identify the d − 1 different parameters in the quiver gauge

theory: In the superconformal quiver gauge theory the R-symmetry can mix with every

anomaly-free global U(1) symmetry that commutes with charge conjugation.

The global baryonic U(1)’s are gauge symmetries in the gravity dual picture. H3(X5, Z) =

Z
d−3 (see [16]), i. e. the number of independent 3-cycles in the X5 Sasaki-Einstein mani-
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fold is d− 3, hence the Kaluza-Klein reduction of the Ramond-Ramond 4-form gives d− 3

different gauge fields in AdS5. These local symmetries correspond in the dual quiver theory

to global baryonic U(1)’s.

Tilting the lattice along a rhombus loop means that the R-symmetry is mixing with a

certain U(1) charge. The bifundamentals along the loop have +1 and −1 charges alternat-

ingly under this U(1) and all the other fields have zero charges. The baryonic U(1)’s are

linear combinations of these charges.

We identified d−3 degrees of freedom as the mixing of the R-charge with the baryonic

charges. The two remaining charges correspond to the mixing with the two flavor U(1)

charges. These are dual to the Abelian part of the isometry group of the Sasaki-Einstein

manifold which is mixing with the Reeb vector in the sense of Z-minimization (see [15]

for details). The corresponding tiltings are roughly speaking Dehn-twists along the two

nontrivial (1, 0) and (0, 1) cycles.

One can compute the number of possibly different R-charges for the quiver theory in

the following way. Let us fix two rhombus loops (zig-zag paths). It is clear that whenever

they cross one another, they produce a bifundamental field with the same R-charge. This

follows from the fact that the rhombus loop angles of the two loops fully determine the

orientation of the rhombus edges, i. e. they fix the R-charge of the field. Therefore we can

get different charges only from different rhombus loop intersection points. We can count

the number of different possible R-charges. Out of the d loops we are choosing two in all

possible ways:
(

d

2

)

=
d(d − 1)

2
(4.2)

which gives the maximum possible number of different R-charges of the quiver theory.

5. Fast inverse algorithm

The above discussed techniques based on the isoradial embeddings, rhombus loops and

zig-zag paths allow us to develop the Fast Inverse Algorithm, which constructs the brane

tiling from arbitrary toric diagrams. The brane tiling encodes the quiver (dual graph), the

superpotential data (nodes), hence uniquely describes the quiver gauge theory. Therefore,

by means of the Fast Inverse Algorithm we are able to compute an AdS/CFT dual to any

toric singularity. (The algorithm is somewhat complicated by the fact that the resulting

theory is highly non-unique. This phenomenon will be investigated in section 6.)

In the following, we describe the algorithm by presenting examples.

5.1 C
3 (N = 4)

In figure 22 the toric diagram of the flat C
3 Calabi-Yau manifold is shown. The polygon

has three edges, hence three (p, q)-legs (the blue arrows) with homology classes (−1, 0),

(0,−1) and (1, 1). These correspond to the three rhombus loops in the rhombus lattice, or

to the zig-zag paths in the tiling.

We now draw these (p, q) cycles in the fundamental cell (see the blue lines in figure 23)

this is the rhombus loop diagram. In the language of the rhombus lattice, at each intersec-
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Figure 22: C3 toric diagram

A

B

C

Figure 23: Rhombus loop diagram of C3. The blue rhombus loops are the D6-branes. At the

intersection points we get massless fields. The dark faces are terms in the superpotential, the light

faces are the gauge groups. These correspond respectively to nodes and faces in the brane tiling.

The rhombi are shown in red, the brane tiling edges are green.

tion point we have a single rhombus, which is shown in red. Each rhombus comes with a

single bifundamental edge in the brane tiling, these edges are shown in green. To obtain

the rhombus lattice, we have to glue these rhombi together (in a periodic fashion), so that

along the blue lines we get rhombus paths (figure 24). Once we have the (red) rhombus

lattice it is trivial to obtain the (green) brane tiling which encodes the quiver gauge theory.

We shaded some of the faces in the rhombus loop diagram. From the algorithm it is

clear that these correspond to the (black or white) nodes, whereas the light faces correspond

to the faces in the brane tiling (see also figure 30 where the green brane tiling is drawn

directly on top of the rhombus loop diagram of L131). We see that the rhombus loop

diagram treats the gauge groups and the terms in the superpotential on equal footing.

For this simple example, we have only three rhombi, i. e. three fields, which turn out

to be adjoints, because we have only one gauge group in the tiling. In figure 24 we recover

the hexagonal lattice of N = 4.

5.2 Conifold

We now turn to the conifold and will see how we can reproduce the well-known square
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periodic lattice

gluing together

extracting the tiling

Figure 24: From the rhombi to the brane tiling. We glue the rhombi together that arise at the

intersections of rhombus loops (figure 27). We glue the edges that are connected by the rhombus

loops. Each rhombus has a green tiling edge in it, from which we obtain the entire (hexagonal)

brane tiling.

Figure 25: Conifold toric diagram

lattice brane tiling for this theory (figure 4). The toric diagram (figure 25) has four legs,

these cycles can be seen in the rhombus loop diagram in figure 26.

We can actually skip the rhombus lattice step and draw the brane tiling immediately

in the rhombus loop diagram. The emerging green square tiling is better seen in figure 27

where we have drawn a 2× 2 block of adjacent fundamental cells. The square lattice tiling

reproduces the superpotential of [6, 8].

Refining the integer lattice of the toric diagram means orbifoldizing the singular Calabi-

Yau manifold. The resulting toric diagram has more (p, q)-legs as seen in figure 28. Clearly,

we can realize orbifolding by increasing the size of the fundamental cell of the rhombus

loop diagram to n×m times the size of the original cell. This means orbifolding the space
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Figure 26: Conifold rhombus loops and brane tiling

Figure 27: Four fundamental cells of the conifold rhombus loop diagram. If we consider these

cells as one big fundamental cell then we gain the rhombus loop diagram of the Z2 ×Z2 orbifold of

the conifold.

by Zn × Zm. The action is generated by

(z1, z2, z3) 7→ (λz1, z2, λ
−1z3), λm = 1 (5.1)

(z1, z2, z3) 7→ (z1, ωz2, ω
−1z3), ωn = 1 (5.2)

Multiplying the unit cell of the rhombus loop diagram is the same as increasing the

size of the fundamental cell in the brane tiling therefore it justifies the observations made

in [17].
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orbifoldization

Figure 28: Z2 × Z2 orbifold of the conifold.

Figure 29: L131 toric diagram

Figure 30: L131 rhombus loops and brane tiling

5.3 L131

As a more complex example, we generate brane tiling for L131 which denotes one of the re-

cently discovered 5d Sasaki-Einstein metrics ([51], see also [52]). The space is topologically

S2 ×S3. The toric diagram (figure 29) has six legs, one possible rhombus loop diagram for

them is shown in figure 30. We notice that by moving the blue loops around, we may get

a different tiling. This important phenomenon is toric duality and will be investigated in

section 6.
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Figure 31: (i) L131 brane tiling (ii) and the corresponding quiver.

We can immediately draw the green tiling edges in the rhombus loop diagram, the final

brane tiling can be seen in figure 31 (i). From the tiling we trivially obtain the quiver (the

“compactified” dual graph to the tiling, figure 31 (ii)) and the following superpotential:

W = X11X12X21 + X22X23X32 + X43X34X41X14 (5.3)

−X21X12X22 − X32X23X34X43 − X11X14X41 (5.4)

The fundamental cell in the tiling is denoted by a red box, this is the same as the

fundamental cell of the rhombus loop diagram.

Closed oriented loops in the rhombus loop diagram (figure 30) have a corresponding

gauge invariant trace operator which is the product of the bifundamentals (at the intersec-

tion points) along the loop. These operators give a subset of all possible gauge invariant

operators. Superpotential terms are trivial examples, these are small loops around the dark

faces in the diagram. Another example is provided by the zig-zag operator, for which the

above mentioned oriented loop is just one of the rhombus loops.

If there are no degenerate rhombi, then we can use the results of [43] and count the

number of bifundamental fields directly from the toric diagram. This can be done by

summing up the intersection numbers as in [53]. The number of fields coming from the

crossing (p1, q1) and (p2, q2) rhombus loops is simply

#(Si · Sj) = #(Ci · Cj) = |p1q2 − p2q1| (5.5)

Hirzebruch zero has two phases, one of them is non-degenerate (i. e. there are no degenerate

rhombi). The formula gives the right value (eight) for the number of fields. The other phase

has Ri = 1 for some of the bifundamentals, so the above formula can’t be used.

5.4 L152

Our last example8 is L152, its toric diagram is in figure 32.

8The quiver gauge theory for Labc has been constructed recently in [16, 54, 55].
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Figure 32: Toric diagram of L152

Figure 33: L152 brane tiling from the rhombus loops

The drawing of the rhombus loop diagram (figure 33) is more involved than in the

previous cases. To obtain an anomaly free tiling, one has to make sure that every other

face (the light areas) has an even number of bounding rhombus loops (i. e. in the tiling the

the corresponding face has even number of edges). To decide which face is dark and which

one is light, we recall that the dark superpotential faces are distinguished by the fact that

the rhombus loops are oriented around them. The gauge invariant trace operators built up

from these small oriented loops are present in the superpotential, the order of the operator

is given by the number of bounding rhombus loops of the dark face (this can be arbitrary).

Again, to see the tiling emerging out of the rhombus loop diagram, we have drawn

more fundamental cells next to each other (figure 34). The dark faces get black and white

nodes, the edges of the tiling are stretching between them.

Finally, figure 35 shows the resulting brane tiling and quiver. Six gauge groups are

present in the theory. This is what we expected from the area of the toric diagram, as

follows from equation (2.3).

We can check the resulting tiling by computing the characteristic polynomial (5.7) of

the dimer model by means of the determinant of the Kasteleyn matrix (5.6) (for details

see [1]). The Newton polygon reproduces our starting point, the toric diagram of L152
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Figure 34: 2×2 fundamental cells of the rhombus loop diagram of L152. The brane tiling is shown

in green.
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Figure 35: (i) L152 brane tiling (ii) and the corresponding quiver

(figure 32) therefore justifies our computation.

K =















1 1 −1 w−1 0

w 1 0 0 z

0 1 1 1 0

0 0 w 1 1

z−1 0 1 0 1















(5.6)

P (w, z) ≡ det(K) = 6 − 6w + w2 + z−1 + w−1z−1 + z (5.7)
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Figure 36: The elementary Picard-Lefschetz-Yang-Baxter transformation.

Yang−Baxter

transformation
X X

Y Y

Z Z

Figure 37: The Yang-Baxter-Reidemeister transformation on the rhombus lattice. Star-triangle

6. Toric duality and Seiberg duality

We have seen ambiguities while constructing the brane tilings for a given singularity. The

non-uniqueness manifests itself through the fact that we can freely move the rhombus loops

which certainly changes the tiling and therefore the quiver gauge theory. Some of the

resulting tiling might not be bipartite. Out of the bipartite tilings we are also only interested

in the consistent ones. These “phases” of the theory are believed to be Seiberg-dual to

each other [56 – 59].

The simplest transformation is when we move a single rhombus loop across an inter-

section point as in figure 36. This is the Yang-Baxter transformation. We can build up

a generic transformation from such elementary steps. The Yang-Baxter move changes the

rhombus lattice locally which is shown in figure 37.

On the other hand, the brane tiling (and the periodic quiver) has been changed globally.

Apart from the local change in the rhombus lattice, we are forced to “flip” the tiling edges

in the rhombi (figure 7), i. e. the periodic quiver and the brane tiling get interchanged. The

periodic quiver is usually non-bipartite (the only exception is the square lattice), therefore

the resulting tiling is non-bipartite. However, one can perform more such Yang-Baxter

transformations so that the final brane tiling is anomaly-free. Then, by definition, the

resulting theory is toric dual to the original one. We provide an example in the followings.

6.1 Seiberg duality in the hexagonal lattice with extra line

Let us consider an arbitrary brane tiling with a subtiling shown in figure 38 (i). This setup
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Seiberg

duality
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D
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Figure 38: (i) Four hexagon with one extra line. (ii) Seiberg dualizing the red square (F ). The

extra edge in the upper hexagon (B & F ) gets into the lower one (F & C).

Seiberg
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D
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D
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C

D

Figure 39: Seiberg duality in the hexagonal tiling with extra edge. The brane tiling is shown in

green, the (deformed) rhombus lattice is in red, the relevant rhombus loops are in blue.

has been used in [16]. If we dualize group F , the extra edge moves into the neighboring

hexagon.

What happened to the rhombus loops during this dualization? We can see that im-

mediately, if we draw the (red) rhombus lattice (figure 39). The relevant rhombus loops

(A,B,C,D) are shown in blue as usual. Only these loops are affected by the transformation.

Figure 38 shows the rhombus loops only. In this picture we see how Seiberg duality can

be realized on the level of rhombus loops. It can be easily checked that the transformation

contains four elementary Yang-Baxter steps. For another brane realization of Seiberg

duality see [29, 60].

With this knowledge, a thorough study of the possible moves of the rhombus loops (and

the inconsistencies of the tiling) should reveal whether or not Seiberg duality is equivalent

to toric duality.

7. Conclusions

In this paper we have proposed the Fast Inverse Algorithm that computes the quiver gauge

theory living on probe D3-branes. The algorithm computes the recently discovered brane

tilings, i. e. the quiver gauge theory directly from the toric diagram of the AdS/CFT dual

– 29 –



J
H
E
P
1
0
(
2
0
0
7
)
0
2
9

C

D

A BSeiberg

duality

D

A B

C

Figure 40: Seiberg duality in the level of the rhombus loops.

singularity without using the metric. It gives a better understanding of the connection of

the quiver theory and the singularity.

In the following we summarize by points some open questions and potential directions

for future research in the hope that some of these ideas will get more concrete realization.

In [61] Baxter introduced the so-called Z-invariant Ising model. The construction is

based on rhombus loops (a.k.a. rapidity lines, see figure 7 in [61]) and the rhombus loop

diagram. This is the most general setting in which the Ising model is exactly solvable. It

would be interesting to study this model from the viewpoint of string theory and integrable

structures in AdS × X spaces.

By simply drawing an arbitrary periodic bipartite graph we might get an inconsistent

theory. The full classification of consistent brane tilings is still an unsolved problem,

although the rhombus lattice technique presented in this paper gives partial solution by

giving constraints on the consistent tilings.

As is well known, a given singular manifold may have many toric phases. The number

of such toric phases may have an important role for the geometry. These phases differ

from each other by the number of fields, the tiling configuration and by the number of

terms in the superpotential. This therefore leads to a natural question. Is there a phase

which is more spacial or more fundamental than the other phases? We may call this phase

the canonical phase. Can a canonical phase be defined for each quiver theory? A starting

point for answering this can be the lemma of Kenyon, [18], which states that the hexagonal

lattice is universal, i. e. every tiling can be obtained by removing edges from the hexagonal

lattice (and integrating out two-valence nodes). This statement is also true for the square

lattice. In all examples studied so far it appears that the squares and the hexagons are the

basic building blocks for at least one representative from the set of toric phases of a given

toric singularity. All toric models seem to interpolate between hexagons and squares. It

will be interesting to find more evidence for this observation.

The brane tiling is periodic, or equivalently, it is sitting on a 2-torus. An interesting

generalization would be the extension of the idea to higher genus surfaces. This might be
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done in the context of discrete Riemann surfaces [42].

We have seen that Seiberg duality can be realized by moving around the rhombus loops.

Nevertheless, not all deformations of the rhombus loops give an anomaly-free quiver (i. e.

bipartite tiling), and even the anomaly-free ones can be tachyonic – some of the R-charges

may vanish. It would be intriguing to understand which brane tilings are “good” in the

above mentioned sense, this might shed some light on how to generalize Seiberg duality.

Another interesting direction is to study the Fast Forward and Fast Inverse Algo-

rithms in the context of the derived category approach to D-branes on Calabi-Yau man-

ifolds [25, 62]. One can also study the direct equivalence of the Forward and the Fast

Forward Algorithms [63]. This gives another justification for brane tilings. Recent results

in understanding the Fast Inverse Algorithm in an intersecting D6-brane scenario will be

presented in [64].
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